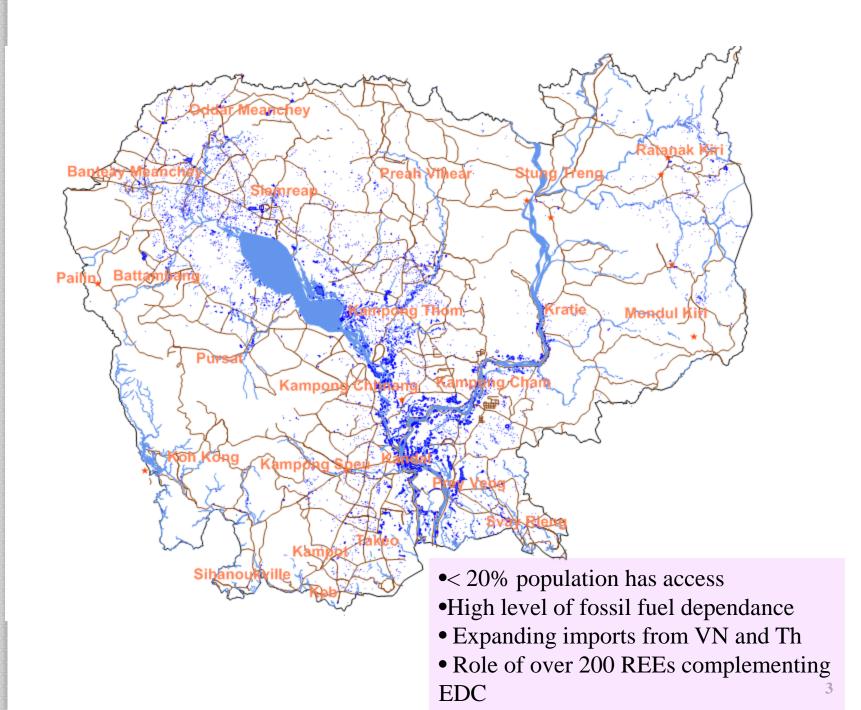


Sustainable Rural Electrification Plans and practical investment case studies

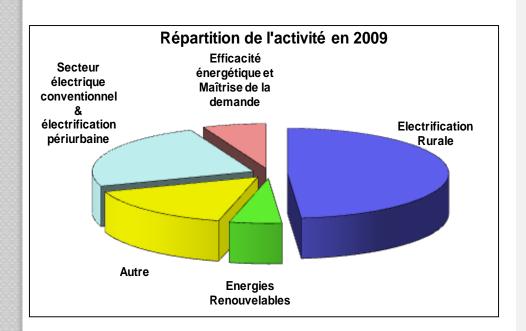
Inception Workshop Phnom Penh 4-5 March 2010



Contents of the presentation

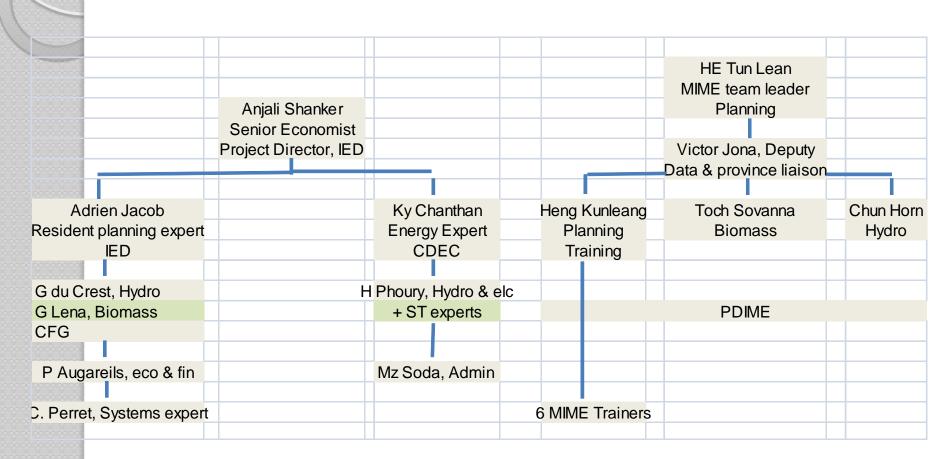
- SREP study context and objectives
- Presentation of the team and project organisation
- Overview of methodology and activities
- Key Milestones

- Produce sustainable rural electrification investment plans, as a tool for investment planning and policy dialogue for MIME
 - Province by Province
 - Using the IED developed decision aid tool GEOSIM
 - Options: grid extension, local, renewable energy resources, diesel
 - Various scenarios : policy objectives (eg connection rates, within a certain time frame) and constraints (eg budgetary)
- Know-how transfer: install the GEOSIM software at the Ministry and train MIME staff
- Feasibility studies for 2 to 5 potential renewable energy projects (50kW-2MW)
 - Develop business models
 - Mobilise operators and financial partners
 - Involvement of REF (fiancing) EAC (regulatory framework) EDC (network)



- Based on a request from MIME, the French government has provided financial support through the FASEP fund of the Ministry of Finance;
- The French Engineering and Consulting firm, Innovation Energie Développement (IED) based in Lyon has been contracted
 - In partnership with CDEC (Cambodia Development Engineering Consulting) – subsidiary in Cambodia
 - Subcontracting CFG services to assess the potential for low temperature geothermal energy
- MIME the beneficiary
 - Contributes to defining the planning scenarios
 - Ensures data collection
 - Mobilises the needed Consultative Group of :
 - Energy sector operators : EDC, EAC, REF, REEs
 - Relevant Ministries: health, rural development, agriculture, ...

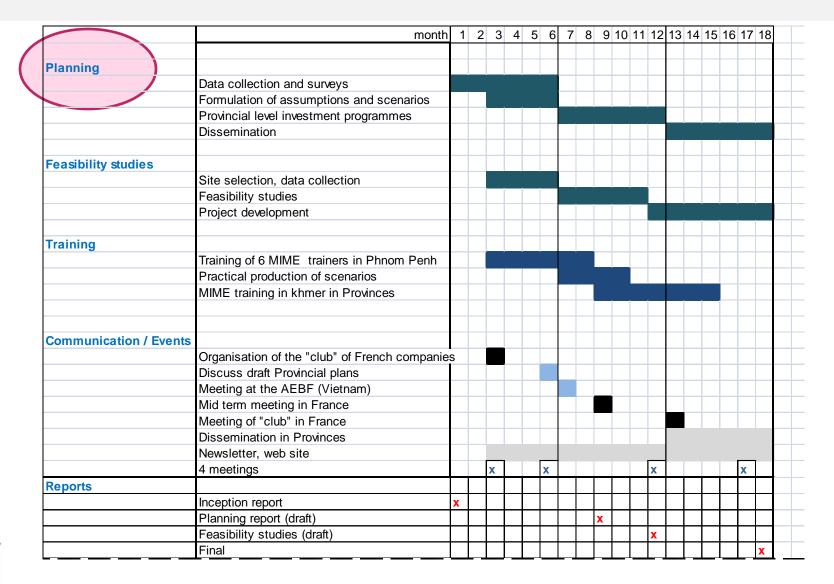
IED in brief


☐ 40 employees staff, 10 nationalities **□** 50% based outside France ☐ Country bases **Head office Subsidiary Project or Rep office** □ Centered on access to electricity services in rural and periurban areas
 □ Focussed on sustainable development: renewable enrgy, energy efficiency, capacity strengthening
 □ From policy formulation to hands on project implementation

In Cambodia since 2003,

- Capacity building in the power sector – regional interconnections to bring down cost of service
- Capacity building for rural electrification: technical and financial management for rural entrepreneurs
- Planning, with the setting up of a national data base – CAP REDEO pilot in Kampong Cham
- Energy efficiency in the hotel industry

Project team and responsibilities



Overview of activities and approach

- The planning approach
- Data collection and scenario formulation
- Training
- Feasibility studies
- Mobilisation of partners

Summary schedule

GEOSIM planning process – overview – illustrate from Kampong Cham example

GEOSIM Spatial Analyst®

Spatial analysis and planning

- Identification and selection of development poles.
- Analysis of hinterlands and ranking of poles
- Identification of isolated settlements

GEOSIM Demand Analyst®

Load forecasting (throughout the planning period)

- Assessment of energy consumption
- Assessment of peak load
- Assessment of the number of LV and MV clients

Rural electrification plan of the targeted territory

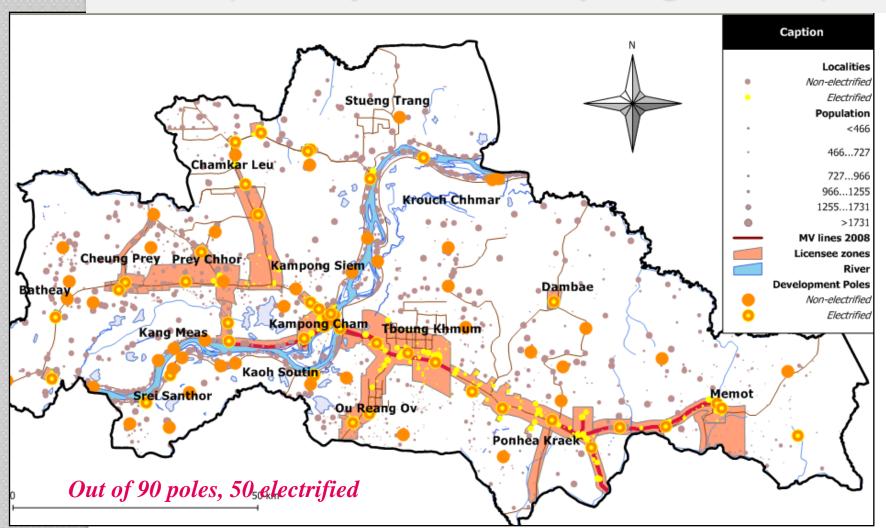
3

GEOSIM Supply Options®

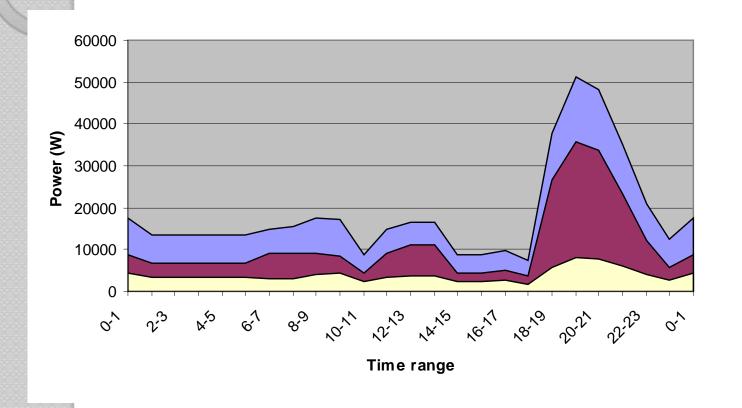
Comparison of supply options

- Analysis of supply options of development poles (grid, diesel, hydro...)
- Selection of the least-cost option (sizing and costing)

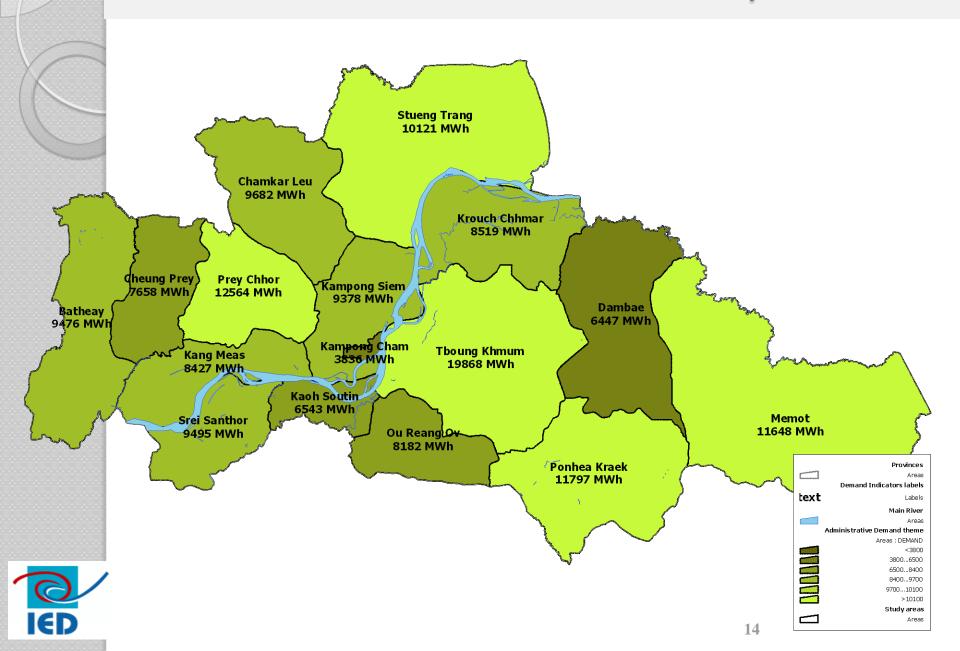
4

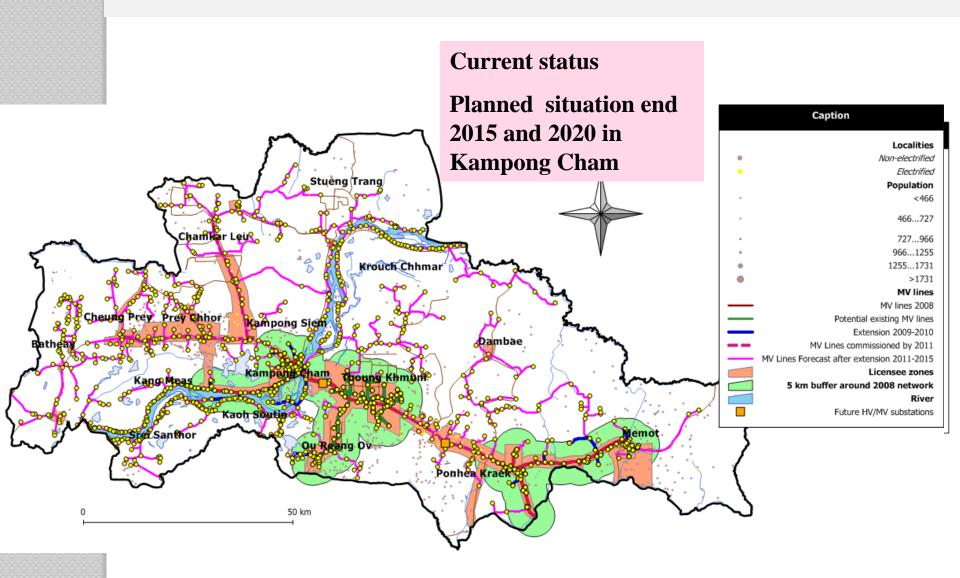

GEOSIM Pre-Elec®

Pre-electrification strategies


- Sizing of equipments (PV, Multifunctional platforms)
- Calculation of investments

Status of electrification, plans, "off grid" areas (example of Kampong Cham)

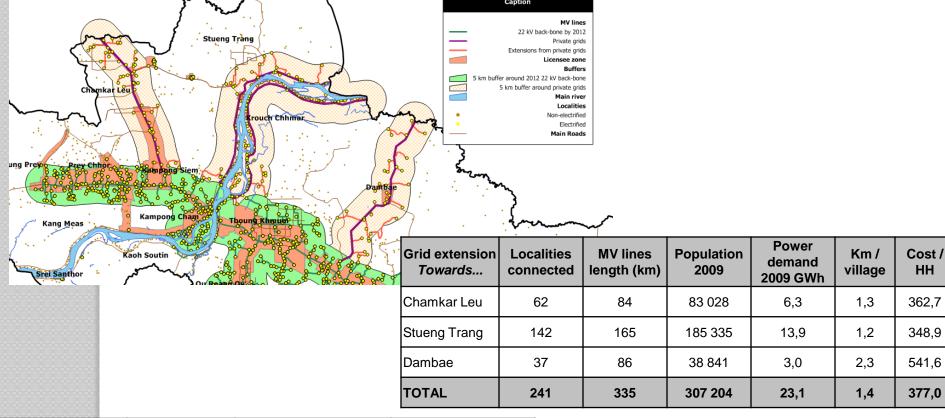

Typical village daily load curves for the 1st, 10th and 20th year (without technical losses)



Load Forecast — 2009 demand by district

Output example for 100% grid extension scenario

Results example for Kampong Cham 100% grid extension


	Pop 2009 '000	Villages connected	dem 2009 kWh/cap	MV line length km	km/vill age	cost per village \$	cost per HH	Invest for Trans (M\$)	Invest for Dist (M\$)
2008 to 2010	284	219	76	201	1,5	50 000	219	4,8	6,2
2012 to 2016	1 113	770	75	1 317	1,7	97 000	382	32	43
2016 to 2020	448	770	80	1 071	1,4	63 000	612	26	22
total	1 845	1845 1759 76 2589 1,5 76 00		76 000	413	62	72		
totai	1 040	1739	70	2 309	1,0	70 000	710	02	1 2

Results example for 3 private line extensions

All villages connected within 5 km buffers

Grid extension Towards	Investment for transmission (MUS\$)	Investment for distribution (MUS\$)	Total investment (MUS\$)
Chamkar Leu	2,0	3,3	5,3
Stueng Trang	4,0	7,4	11,3
Dambae	2,1	1,6	3,7
TOTAL	8,0	12,3	20,3

Key issue: how to attract private investors into this?

17

For remaining villages

- Hydro & biomass generation
 - Supplying a cluster of villages
- Diesel supplied mini grids
- Isolated areas : off grid distributed individual (SHS and pico hydro)

Example of reports produced by GEOSIM

28/05/2008

BIOMASS PROJECTS REPORT

ARE	A : Kampong Cham		
	Cluster #: 1	Levelized cluster cost :	0.26 \$ US/kWh
		Levelized connected cluster cost :	0,16 \$ US/kWh
_	Settlement Name	<u>Population</u>	
	Kandal	466	
	sambuor	963	
	Kor	1 227	
	Total population Cluster : 1	2 656	
ſ	Cluster #: 2	Levelized cluster cost :	0.34 \$ US/kWh
		Levelized connected cluster cost :	NA \$ US/kWh
-			
	<u>Settlement Name</u>	<u>Population</u>	
	Beak Anlung	2 656	

Supply Options module

Example of reports produced by GEOSIM

Cashflow Report for Hydro Projects

Mode: Isolated

Gesim

Project :	# 1		Sangkae				SHP Capacit	<u>v :</u>	4 <i>kW</i>	Hydro re	7 600					
		Area : Kamp	ong Cham		Lavalla de Cardo	0.44-0.110.014			Residual Value	es	50 587					
Cottles		annahar in the abratas .			Levelized Cost :	0.41 \$ US/kWh	Transformers	LV lines	MV lines	Genset	Power House	Grid connection				
Settler	nents	number in the cluster:	1				4 800	1 260	25 356	2 571	9 000	0				
Year	1	Genset energy produced :	. 0	kWh		Cluster i	investments				Cluster O	&M				
		Hydro energy produced	0	kWh	Small Hydro :	6 000	Meters MV :		0	O&M Fu	<u>el :</u>	0				
		Demand	22103	kWh	Genset :	0	Meters LV:		0	O&M Ma	aintenance :	0				
		<u>Peak</u>	4	kW	MV lines :	21 000	Transformers L	V :	4 000	O&M Pe	rsonnel:	0				
		Customers LV :	14		MV internal lines :	130	Transformers M	<u>1V :</u>	4 000	O&M Ot	hers:	0				
		Customers MV :	2		LV lines :	975	Grid connection	<u>1 :</u>	0	Total O	<u> М:</u>	0				
		MV length:	1750	m	Power house :	15 000	Total Investm	Total Investments:								
Year	2	Genset energy produced :	1762	kWh		Cluster investments				Cluster O&M						
		Hydro energy produced	24878	kWh	Small Hydro :	6 000	Meters MV:		10 000	O&M Fu		624				
		Demand	26464	kWh	Genset :	5 600	Meters LV:		950	O&M Ma	aintenance :	725				
		<u>Peak</u>	5	kW	MV lines :	21 000	Transformers L	<u>V :</u>	4 000	O&M Pe	rsonnel:	240				
		Customers LV :	19		MV internal lines :	130	Transformers M	<u>1V :</u>	4 000	O&M Ot	hers:	120				
		Customers MV :	2		LV lines :	975	Grid connection	<u>1 :</u>	0	Total O	<u>kM :</u>	1 709				
		MV length:	1750	m	Power house :	0	Total Investm	ents :	52 655							
Year	3	Genset energy produced :	4823	kWh		Cluster i	investments				Cluster O	&M				
		Hydro energy produced	26486	kWh	Small Hydro :	0	Meters MV :		0	O&M Fu	<u>el :</u>	1 709				
		Demand	30827	kWh	Genset :	0	Meters LV:		200	O&M Ma	aintenance :	725				
		<u>Peak</u>	7	kW	MV lines :	0	Transformers L	Transformers LV :		O&M Pe	rsonnel:	240				
		Customers LV:	23		MV internal lines :	0	Transformers M	Transformers MV :		O&M Ot	hers :	120				
		Customers MV :	2		LV lines :	0	Grid connection	<u>1 :</u>	0	Total O	<u>kM :</u>	2 794				
		MV length:	1750	m	Power house :	0	Total Investm	ents :	200							

Overview of methodology (2)

- The planning approach: building on the results of the Cap
 REDEO pilot phase implemented in Kampong Cham Province
- Training
- Data collection and discussion of scenarios
- Feasibility studies
- Mobilisation of partners

- Global objective: Trainers must be able to
 - Understand rural electrification concepts and issues
 - Master GIS basic techniques
 - Be familiar with GEOSIM© modules and be able to run scenarios at provincial level
 - Train in khmer on GIS techniques and GEOSIM use at regional level

Training session Agenda:

- Three training sessions will be conducted for the next 6 months (7 days each)
 - Overview, data base and GIS, Spatial analysis
 - Load forecast and grid extension
 - Renewable energy and off grid supply options
- Each trainer will be evaluated at the end of the session and some tests will validate the acquired knowledge in order to prepare some assignments
- Weekly follow up by resident planning expert

Further deployment:

- Training manuals will be provided in khmer and used by trainers
- MIME will decide upon and organise training in khmer in key Provinces

Data collection and discussion of scenarios

- Existing and planned networks and generation by EDC and REEs
- 2. Socio economic data to assess load growth and impacts
- 3. Potential hydro sites and biomass sites
- Already started with the support of MIME and will be discussed tomorrow
- Regional kick offs organised by MIME counterparts
 - Overall project presentation
 - Organisation of data collection with PDIMEs
 - At Provincial level and surveys
- Scenarios:
 - First discussion, this afternoon
 - Meetings with counterparts every 2 weeks
 - June 2010: presentation of results and discussion on further sensitivity analysis

Summary schedule

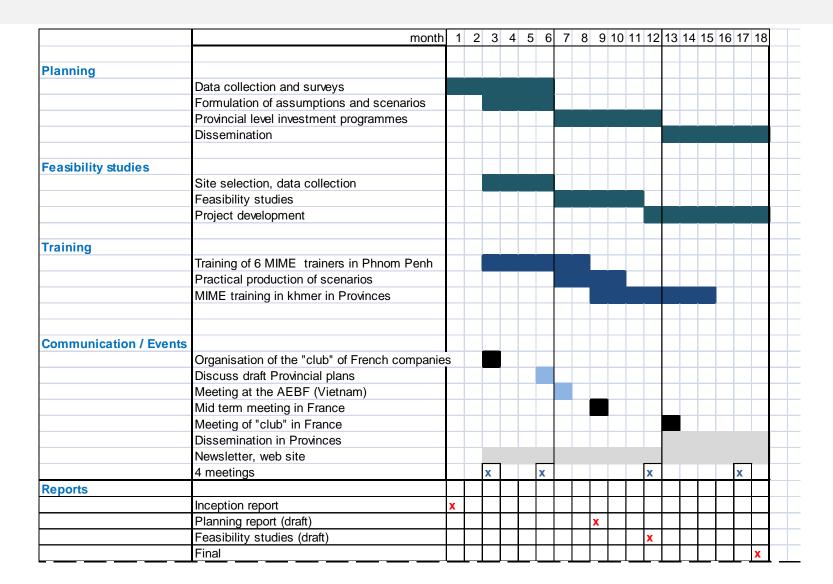
	month	1	2	3	4	5	6	7	8	9 1	0 1	1 1	2 1	13 1	4 1	5 16	17	18
Diamaina															+			
Planning	Data collection and our rove								-			_		-	+	+		
	Data collection and surveys	i										+		+	+	+		
	Formulation of assumptions and scenarios													-	-			
	Provincial level investment programmes									-								
	Dissemination								-							1		
Feasibility studies																		
	Site selection, data collection																	
	Feasibility studies																	
	Project development																	
Training																		
	Training of 6 MIME trainers in Phnom Penh																	
	Practical production of scenarios																	
	MIME training in khmer in Provinces																	
									_				_		_			
Communication / Events														_				
	Organisation of the "club" of French companie	S							_			_		4	_	_		
	Discuss draft Provincial plans																	
	Meeting at the AEBF (Vietnam)																	
	Mid term meeting in France																	
	Meeting of "club" in France																	
	Dissemination in Provinces																	
	Newsletter, web site																	
	4 meetings			X			X					X	(X	
Reports																		Ш
	Inception report	X																
	Planning report (draft)									X								
	Feasibility studies (draft)											X	(Ш
	Final																1	X

Overview of methodology (3)

- The planning approach: building on the results of the Cap
 REDEO pilot phase implemented in Kampong Cham Province
- Training
- Data collection and discussion of scenarios
- Feasibility studies
- Mobilisation of partners

Renewable energy feasibility studies with an investment perspective

- Short list ASAP hydro and biomass potentials about 20 potentials 200kW to 2MW
- Criteria: reasonable investment cost and located close to a load center – with good profitability perspectives
 - June 2010: finalise the list of sites (2 to 5)
 - July to Dec 2010:
 - Socio economic and technical data collection
 - Technical design
 - Economic and financial analysis
 - Sept 2010 to March 2010:
 - Discuss possible financial support schemes: involvement of REF, setting up of a credit line by AFD / PROPARCO



Mobilisation of partners and dissemination

- Setting up in France of a Club of interested companies
 - Under the aegis of sector organisations
 - Informed of progress and opportunities on a quarterly basis
- Organisation of a side event at the AEBF July 2010,
 Vietnam
 - Show the results of the planning tool
 - Mobilise industry to meet ASEAN decision makers
- Mid term meeting in France with MIME and the Ministry of finance and industry – Sept 2010
- Follow up projects for investment Jan July 2011
- Web site: <u>www.srep.org</u>

Schedule

