

Supported by the ACE through the EC – ASEAN Energy Facility

List of training courses on electrical power system for Cambodia, Laos, Vietnam and Thailand (CLVT) countries

(Responsible and coordinator: Dr. Tuan Nguyen, t.nguyen@ied-sa.fr)

- 1. TRAINING COURSE 1 CUSTOMER SERVICE METERING AND BILLING
- 2. TRAINING COURSE 2 HYDROPOWER PLANT ENGINEERING AND ENVIRONMENTAL IMPACT
- 3. TRAINING COURSE 3 HYDROPOWER PLANT OPERATION AND MAINTENANCE AND PRODUCTION
- 4. TRAINING COURSE 4 LOW VOLTAGE AND MEDIUM VOLTAGE OPERATION AND MAINTENANCE
- 5. TRAINING COURSE 5 POWER WHEELING AND CENTRALIZED DISPATCH OF POWER SYSTEM
- 6. TRAINING COURSE 6 POWER SYSTEM ENGINEERING, COMPUTERIZED TOOLS FOR ANALYSIS AND RELAY COORDINATION
- 7. TRAINING COURSE 7 POWER SYSTEM PLANNING AND ENVIRONMENTAL CONCERNS
- 8. TRAINING COURSE 8 SUBSTATION OPERATION & MAINTENANCE
- 9. TRAINING COURSE 9 TRANSMISSION LINE OPERATION & MAINTENANCE TECHNIQUE

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 1

CUSTOMER SERVICE METERING AND BILLING

Tariff designing and principle of calculating tariff

The objective of this training course is to learn the methods of designing tariff, principles of calculating tariff for specific customer category and learn how to manage the customer's information system.

The material of the part I and II, prepared by IED, can be a basic of 2-2.5 day-long intensive training course. It will be accompanied by presentations in MS PowerPoints. This textbook was compiled and adapted from different sources as a manual hand-out for Customer services personnel of EDC. Some practical exercises are included for each session.

Supported by the ACE through the EC – ASEAN Energy Facility

Table of Contents

Chapter I – Electricity pricing and tariff

- 1. Electricity costs
- 2. Marginal cost pricing and average cost pricing
- 3. Electricity tariff on energy and on demand
- 4. Electricity tariff based on customer categories
- 5. Seasonal and time-of-day tariff
- 6. Tariff regulation
- 7. Billing calculation and some practical exercises
- 8. A modern tariff restructuring process

Chapter II – SOFTWARE TOOLS FOR ASSISTING WITH MANAGEMENT AND MAINTENANCE OF MINI ELECTRIC GRIDS AND PHOTOVOLTAIC KITS SYSTEMS

- 1. Issues
- 2. The development of Solutions: A Participative Approach
- 3. MRGestion Mini grid management conception
- 4. PVGestion Photovoltaic management conception

Annexe: Electricity Tariff Restructuring in Thailand, National Energy Policy Office of Thailand, 2001.

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 2

HYDROPOWER PLANT ENGINEERING AND ENVIRONMENTAL IMPACT

This material is collected by Center of Excellence for Hydro Power Plant Project, Electricity Generating Authority of Thailand. The purpose of the material is to be a reference for Hydro Power Plant Engineering and Environment Impact Training Course on Capacity Building Programme for power industries in Cambodia, Laos, Vietnam, and Thailand (CLVT) countries under Initiative for ASEAN Integration (IAI) Project.

The material, for the optimum benefits and other usage, may need further revision. In the mean time, the collectors apologize for any mistake that may cause to you and also appreciate your advice.

Collectors Group

Capacity building programme for power industry of Cambodia, Laos, Vietnam and Thailand (CLVT) countries Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

Preface

I. Hydropower Plant Pre - feasibility and Feasibility Study	1
1. Introduction	1
1.1 Hydropower Classification	1
1.2 Hydropower Development Study Process	2
2. Outline of hydro power generation	5
2.1 Hydro power génération	5
2.2 Types of hydro power plant	6
2.3 Power demand and supply	9
3. Project Planning and Pre - Feasibility Study	12
3.1 Flow of project planning	12
3.2 Planning of development scheme	22
4. Site reconnaissance and determination of development plan	31
5. Feasibility Study	35
5.1 Run-of-river Type	35
5.2 Reservoir Type	46
III. Environmental Impact Assessment of Hydro Power Project	63
1. Introduction	63
2. Type of Power Plant and Installation Capacity	64

2.1 Existing Generating Facilities	64
2.2 Power Plants under Implementation	64
2.3 Load Forecast	65
3. EGAT and Environmental Management	66
3.1 Corporate Environmental Policy of EGAT	66
3.2 Environmental Division Organizational Structure and Responsibilities	67
4. Environmental Impact Assessment Process of Hydro Power Project	75
4.1 What is EIA?	75
4.2 Law, Regulation and Standard that Associated with Hydropower Project	
Development	79
4.3 Guideline for Environmental Impact Assessment of Dam and Reservoir	
Project	80
4.4 EIA Process	88
4.5 Approval Process for EIA	91
5. Dam construction and accompanying EIA process	91
5.1 Drainage basin environment condition in Thailand	91
5.2 Dam construction proceed with environmental management plan	93
5.3 Problem from dam in drainage basin	95
5.4 Solve problem from dam construction in environment	98
5.5 Environmental Impact Assessment with Dam	99
5.6 Monitoring program	100
6. Conclusion	100
7. Reference	101
III. Social Aspects	102
1. Environmental Impact Assessment: Human Use Values and Quality of Life	102
	6

1.1 Potential Impacts upon human use values	102
1.2 Quality of life values	103
1.3 Environmental Impact Mitigation and Development Program (EIMDP)	105
1.4 Environmental Monitoring	105
2. Social Impact Assessment: Fact Sheet	108
2.1 What is Social Impact Assessment?	108
2.2 SIA, SA, and SEIA	108
2.3 Essentials of SIA	109
2.4 Principles	109
2.5 Variables	112
2.6 Methods	113
2.7 Typical Steps in the SIA	114
3. World Bank Participation Sourcebook : Methods for Public Participation	119
3.1 Workshop-Based Methods	119
3.2 Community-Based Methods	119
3.3 Methods for Stakeholder Consultation	119
3.4 Methods for Social Analysis	120
3.5 Using the Methods Well	120
3.6 Collaborative Decision making: Workshop-Based Methods	120
3.7 Collaborative Decision making: Community-Based Methods	122
3.8 Methods for Stakeholder Consultation	123
3.9 Methods for Social Analysis	124
IV.Agriculture-Based Resettlement Design and Management for Hydrodam	126
1. Introduction	126
2. Types of farmland design	127

2.1 The Field-Crop-Based Resettlements	128
2.2 Tree-Crop-Based Resettlement in Thailand	129
3. Selected Case Studies	131
4. Finding and Conclusions	160
V. Water Monitoring	
1. Project types	165
1.1 Hydropower Plants	165
1.2 Thermal Power Plants	166
2. Monitoring Phase	167
2.1 Prior to project commencement	167
2.2 During Construction	167

Appendix	184
4.2 Thermal Power Plant	178
4.1 Hydropower Plants	174
4. Water Quality Monitoring	174
3.2 Methods for Examination	172
3.1 General Precautions	169
3. Monitoring Process	168
2,3 During Operation	168

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 3

HYDROPOWER PLANT OPERATION AND MAINTENANCE AND PRODUCTION

With the experience in power industry of more than three decades, EGAT has developed a great deal of skills and knowledge in operation and maintenance (O&M). However, those skills and knowledge, which need to be collected systematically, are still scattered because of some reasons such as personnel retirement, position rotation, etc.

In order to solve this problem, EGAT by South East Asia Center for Training in Energy for Development (SEACTED) has developed Center of Excellence for Hydro Power Plant Project in collaboration from experienced hydro power plant staff. The skills and knowledge on hydro power plant O&M has been gathered, systemized, and transferred as "Basic Hydro Power Plant Training" material. The material explains the basic idea of how HPP develop. It is also used as a tool for increasing potential of hydro power plant O &M personnel, also the other people who are interested in this field.

The content in this book might not be perfectly composed. Therefore, we are very please to any of your suggestion that helps complete this material.

Collectors Group

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

PREFACE

CHAPTER 1 THE ROLE OF HYDROELECTRIC POWER PLANT IN THAILAND

- 1.1 Introduction
- 1.2 Electric Power Transmission and Distribution Systems

CHAPTER 2 HYDRAULIC PRINCIPLE AND POWER PLANT EQUIPMENT

- 2.1 Hydraulic Principles
- 2.2 Main Equipment of Hydroelectric Power Plant

CHAPTER 3 RESERVOIR AND WATER MANAGEMENT

- 3.1 Hydrology
- 3.2 Dam
- 3.3 Intakes and Spillways
- 3.4 Reservoir Administration and Management

CHAPTER 4 HYDRAULIC TURBINE

- 4.1 Type of Hydraulic Turbine
- 4.2 Impulse Turbine
- 4.3 Reaction Turbine
- 4.4 Selecting of Hydraulic Turbine

CHAPTER 5 CONTROL SYSTEM FOR WATER TURBINE

- 5.1 Fundamental Theory of The Control System
- 5.2 The control of Water Turbine
- 5.3 Turbine Monitoring and Protection System
- 5.4 Digital Control System

CHAPTER 6 ELECTRICITY GENERATOR

Supported by the ACE through the EC – ASEAN Energy Facility

- 6.1 The Fundamental Theory of The Electricity Generator
- 6.2 Generator Construction
- 6.3 Supporting Equipment for The Generator
- 6.4 The Excitation and The Synchronization

CHAPTER 7 POWER GENERATOR CONTROL SYSTEM

- 7.1 Power Control
- 7.2 Monitoring and Warning System
- 7.3 Protection Relay
- 7.4 Computer Controller

CHAPTER 8 ELECTRICITY GENERATING UNIT COMPONENTS

- 8.1 Type of Auxiliary Equipment
- 8.2 Plant Cooling & Lubrication System

CHAPTER 9 AUXILIARY EQUIPMENTS OF THE POWER PLANT

- 9.1 Transformer
- 9.2 Switchyard
- 9.3 High Voltage and Protection
- 9.4 Station Service and DC Equipment

CHAPTER 10 START-UP AND MAINTENANCE

- 10.1 The Start up
- 10.2 The Maintenance

APPENDIX

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 4

LOW VOLTAGE AND MEDIUM VOLTAGE OPERATION AND MAINTENANCE

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

1. Introduction to Distribution System

- 1. Overview of PEA
- 2. PEA Distribution System
- 3. Distribution Equipment
- 4. Substation Equipment

2. Planning the Distribution System

- 1. Distribution System Planning Criteria
- 2. Load Forecasting
- 3. Economic Evaluation
- 4. Planning LV & MV Lines

3. Distribution System Reliability

- 1. Reliability Overview
- 2. Reliability Evaluation
- 3. Improving Reliability

4. Distribution System Operations

- 1. Operations Organization of PEA
- 2. Operations Control Centre
- 3. Outage Restoration

5. Distribution System Maintenance,

- 1. Maintenance Organization of PEA
- 2. Maintenance Management Principles

6. Distribution Lines Maintenance - Cold Line & Hot line

- 1. Patrolling Distribution Lines
- 2. Distribution System Maintenance
- 3. Distribution Equipment Maintenance
- 4. Substation Maintenance
- 5. Safety
- 6. Computerized Maintenance Management System

7. Designing the Distribution System,

- 1. Distribution System Design Criteria
- 2. Substation design
- 3. LV & MV Distribution lines Design

Supported by the ACE through the EC – ASEAN Energy Facility

8. Distribution System Protection1. Protection Philosophy2. Substation Protection

- 3. Distribution lines Protection

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 5

POWER WHEELING AND CENTRALIZED DISPATCH OF POWER SYSTEM

The objective of this training course is to increase and improve participants know-how on the theories and (de)regulation implementation of existing electricity markets, learn the procedure of production control, identify constraints in power systems operation and learn the concepts of centralized dispatch and power wheeling. This text book was compiled and adapted from different sources as a manual hand-out for GMS Power system personnel of EDC, EDL, EVN and EGAT. Some practical exercises are included for each session.

The material can be a basic of a week-long intensive training course. It will be accompanied by presentations in MS PowerPoints and answers to practical exercises.

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

Part I – Power Market Economics

Power market fundamentals:

- 1. Regulation and deregulation
- 2. What is a market power electricity economics
- 3. Pricing theory and marginal costs in a power market
- 4. Electricity regulation

Market architectures – competitive electricity market :

- 1. Theory and implementation of existing electricity markets
- 2. Architectural introduction to Power market
- 3. The two settlement system
- 4. Standard Market designs
- 5. Functions and responsibilities of system operators Ancillary services

Part II – Power system operation and control

Procedures in production control and emergency

- 1. Procedures in production control
- 2. Procedures in emergency

Communication and ordering, operation reserve

- 1. Objectives
- 2. Available communication means
- 3. Demand
- 4. Supply: available means
- 5. Ordering the generation: economic criteria
- 6. Operation reserve: security criteria

Frequency Control, Voltage Control, Configuration Control

- 1. Frequency control basics
- 2. Primary control
- 3. Secondary control
- 4. Voltage control basics
- 5. Main equipments used for voltage control

Supported by the ACE through the EC – ASEAN Energy Facility

Network management, database management

- 1. Objectives of network management
- 2. GIS Geographical Information System
- 3. Centralized Databases
- 4. Data categories
- 5. Main equipment represented
- 6. Advantages of network management
- 7. Conclusions

Security constrained dispatch

- 1. System security assessment
- 2. Hierarchical view: generation, transmission and distribution
- 3. Temporal view
- 4. Security Constrained Dispatch
- 5. Static Security assessment

Part III – Advanced power market experiences

Nord Pool power market

- 1. Nord Pool international power market
- 2. Balance settlement in Nord Pool
- 3. Congestion management in Nord Pool
- 4. System control and protection Nord Pool experiences

GMS power market strategy and perspectives

- 1. Power structure in GMS
- 2. (De)regulation and organizational structure in GMS power sector
- 3. Interconnection between GMS countries
- 4. Conclusions: capacity building and learning

Part IV - Practical exercises

- Exercise A.1. Linear and logarithmic demand functions
- Exercise A.2. A profit sharing mechanism under PBR regulation
- Exercise A.3. The peak-load pricing problem
- Exercise B.1. Determining dispatching in a power market

Supported by the ACE through the EC – ASEAN Energy Facility

Exercise B.2. Calculate nodal price in a 3 bus transmission system

Questions Chapter C

Questions Chapter D

Questions Chapter E

Questions Chapter F

Questions Chapter G

Exercise "Power/Frequency phenomena in an Interconnected power system" using EUROSTAG with EGIDE, a training software for electrical engineers.

Exercise "Voltage stability" using EUROSTAG with EGIDE, a training software for electrical engineers.

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 6

POWER SYSTEM ENGINEERING, COMPUTERIZED TOOLS FOR ANALYSIS AND RELAY COORDINATION

The objective of this training course is to increase and improve participants know-how on power system engineering technical criteria, power system simulation tools, system modelling, short circuit calculation, dynamic simulation, automatic contingency analysis, and project costs calculations.

This text book was compiled and adapted from different sources as a manual hand-out for GMS Power system personnel of EDC, EDL, EVN and EGAT. Some practical exercises are included for each session.

The material can be a basic of a week-long intensive training course. It will be accompanied by presentations in MS PowerPoints and answers to practical exercises.

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

Part A – Project Costs Calculation

A1. Interest and its formulas

- 1. Interest
- 2. Interest formulas

A2. Project costs or economic evaluation of investment proposal

- 1. Discount rate
- 2. Some economic definitions
- 3. Net present value (NPV)
- 4. Alternative methods of project evaluation
- 5. Issues with different methods

Part B – Power System Engineering

B1. Engineering technical criteria

- 1. Transmission planning: objective, time horizon and criteria
- 2. Contingencies
- 3. Performance requirements
- 4. Deterministic versus probabilistic planning
- 5. Probabilistic methods; Monte Carlo simulations
- 6. Quality of supply, Reliability criteria (SAIDI, SAIFI,...)

B2. Power System Simulation Programmes

- 1. Power flow calculations
- 2. Optimal Power Flow
- 3. The importance of dynamic simulation
- 4. Probabilistic techniques
- 5. Deterministic techniques

B3. Short circuit calculations

- 1. Short circuit currents
- 2. Main types of short circuits
- 3. Consequences of short-circuits
- 4. Establishing short circuit current
 - 4.1 Fault away from the generator
 - 4.2 Fault near to the generator

Supported by the ACE through the EC – ASEAN Energy Facility

5. Short circuit current calculation

Low-voltage AC installations Radial and meshed MV and HV networks Other methods Basic assumptions for short circuit currents calculation

B4. Dynamic Simulations

- 1. General purpose of dynamic calculations
- 2. The mathematic approach of dynamic calculations
- 3. Examples of software used for dynamic simulation

NAP EUROSTAG

B5. Automatic Contingency Selection

- 1. Contingency definition, security criteria
- 2. Sizing incidents
- 3. New approach of contingency analysis
- 4. Approximate Contingency Analysis: contingency filtering, ranking, screening
- 5. Examples of Contingency Analysis Modules in different software

Part C – Computerized Tools for Power System Analysis and Relay Coordination Calculation

- 1. Welcome
- 2. Graphical Interface
- 3. Short Circuit Calculation
- 4. Network Modeling
- 5. Relay Modeling
- 6. Setting Overcurrent Relays
- 7. Setting Distance Relays
- 8. Relay Coordination Checking
- 9. Solving The Power Flow
- 10. Network Modeling In Power Flow
- 11. Power Flow Solution Output

One-liner Exercises
Power Flow Exercises

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 7

POWER SYSTEM PLANNING AND ENVIRONMENTAL CONCERNS

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

Chapter I - Load Forecast

- 1. Overview of Load Forecasting
- 2. Residential Forecasting
- 3. Business Forecasting
- 4. Industrial Forecasting
- 5. Energy Generation Forecasting
- 6. Peak Generation Forecasting
- 7. Conclusion
- 8. Q&A

Chapter II - Power Development Plan

- 1. Overview of Power Development Planning
- 2. Data Requirement
- 3. Plant Selection
- 4. Economic Issues
- 5. Planning Techniques & Tools
- 6. Energy Balance
- 7. Conclusion
- 8. Q&A

Chapter III - Power System Planning - Transmission

- 1. Reviews of academic background
- 2. Power System Analysis
- 3. Stability Analysis
- 4. Reliability Assessment
- 5. Transmission Line Routing, Substation Planning, Cost Estimation
- 6. Economic and Financial Analysis Q&A
- 7. Benchmarking of Production Cost : Theoretical & Practical Consideration for Power System Planning

Chapter IV - Environmental Concerns

- 1. Environmental Issues in Electricity Industries
- 2. Environmental Requirements in Power Development Project
- 3. Environmental Management
- 4. Discussion (Q&A)

Training course 8

SUBSTATION OPERATION & MAINTENANCE

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

- 1. Power transformer
- 2. Power circuit breaker
- 3. Battery and charger
- 4. Capacitor bank
- 5. Disconnecting switch and lightning arrester
- 6. Current transformer and potential transformer
- 7. Grounding system
- 8. Monitoring and maintenance of energy meters
- 9. Communication system
- 10. System protection and protective relays
- 11. Transformer protection
- 12. Bus arrangement and bus protection
- 13. Line protection
- 14. Load shedding system

Supported by the ACE through the EC – ASEAN Energy Facility

Training course 9

TRANSMISSION LINE OPERATION & MAINTENANCE TECHNIQUE

Supported by the ACE through the EC – ASEAN Energy Facility

Table of contents

- 1. Transmission system overview
- 2. Transmission line technology: engineering
- 3. Transmission line technology: Construction
- 4. Transmission line technology: maintenance
- 5. Transmission line facilities management system
- 6. Overhead transmission line
- 7. Basic electrical and engineering concept
- 8. Transmission line equipment: general overview
- 9. Transmission line equipment: manufacturing and testing
- 10. Transmission line inspection
- 11. Transmission line maintenance
- 12. Electrical safety equipment
- 13. Hazards of electricity
- 14. First aid and live saving procedure
- 15. International maintenance practice
- 16. EGAT 500 kV compact line maintenance
- 17. Accident prevention concept and manual
- 18. Technical discussion, experience, problem and solution
- 19. Practical on transmission line maintenance method
- 20. Practical on live line equipment
- 21. Insulator string replacement tools
- 22. Rope knots spices and gear
- 23. Insulator replacement de-energized
- 24. Insulator replacement energized
- 25. Summary and conclusions
- 26. Technical site and factory visit