## Opportunities and Implementation Issues of Community PV Applications

#### ICRA - IEA PVSDC Joint Workshop

Vientiane – 9th April 2005

Prepared by Taric de Villers - IED





## <u>Content</u>

#### Part I : Opportunities and implementation issues

- 1. IEA PVSDC programme
- 2. Community PV applications
- 3. Technological issues
- 4. Non-technological issues
- 5. Experience sharing

#### Part II : Case Studies

- 1. Philippines : SPOTS Project
- 2. Uganda : ERT Programme
- 3. Mozambique : PV for Rural Health Facilities
- 4. Sahel : RSP Programme

Innovation Energie Développement

#### 1. IEA - PVSDC Programme

- New programme of Task 9 includes :
  - Activity 42 : PV for Water services
  - Activity 43 : PV for Health, Education and ICT
- Objective:
  - To provide guidance on the use of PV for water services (pumping, desalination and water purification), and in social applications for health, education and ICT.
- Leader : IT Power (UK)



ICRA - IEA - April 2005

#### 1. IEA - PVSDC Programme

- Work description & Deliverables:
  - Case studies : information on design, performance and reliability, and financing
  - Guideline : to identify when and where PV is most appropriate (cost-effectiveness)
  - Major issue : strategy for long term sustainability (provision for long term operation and maintenance (O&M) strategies is often a recurrent problem)
- Target audiance :
  - Sectoral Ministries and Utilities.



### 2. Community PV Applications

- Various PV system sizes for various rural applications in various countries ...
  - i. PV systems from 100 to 1000 Wp
  - ii. School & Health infrastructures

  - iv. Administration
  - v. Community centres (including ITC)
  - vi. Public lighting
  - vii. Water supply

nnovation Energie Développement

ICRA - IEA - April 2005

#### **3. Technological Issues**

- PV system quality (component and service)
- PV system design :
  - i. Car batteries vs. deep cycle batteries
  - ii. AC vs. DC supply
  - iii. Centralised or individual system
  - iv. Battery charging station
  - v. Hybrid systems vs. pure PV systems
  - vi. Prepayment technology
  - vii. Anti-theft devices
  - viii. Various technologies for pumping and water treatment



Etc.

Innovation Energie Développement

#### 3. Technological Issues (next)

- Final choice depends from many parameters! Technology maturity, performance, reliability, cost, flexibility, local needs, local management capabilities, social-economical parameters, ...)
- In pure telecom business, all those PV design issues have been considered and solved because the profitable business generate enough cash to select high quality components, efficient management and longterm planification.

#### Innovation Energie Développement

ICRA - IEA - April 2005

#### 4. Non-technological Issues

- . Commercial service or not?
- ii. Pre-electrification or real electrification?
- iii. Initial investment : credit schemes, ...
- iv. O&M : management models, costs
- v. Tariffs and subsidies financial viability
- vi. Ownership
- vii. Key actor selection for implementation
- viii. Capacity building and local training
- ix. Etc.

Innovation Energie Développement

#### 4. Non-technological Issues (next)

 Evaluation of the real impact on the local development dynamism (and on Poverty Alleviation)

# Innovation Energie Développement

ICRA - IEA - April 2005

#### **5. Experience Sharing**

- Experience sharing between developing countries is one of the major objectives of the IEA PVSDC activities.
  - i. In Africa and South America many bilateral projects have promote community applications
  - ii. In ASEAN, new interest for community applications
- Project evaluations are rare because very few feedback from experiences, especially in Asia.

nnovation Energie Développement

#### Part II : Case Studies

- 1. Philippines : SPOTS project
- 2. Uganda : ERT Programme
- 3. Mozambique : PV for Rural Health Facilities
- 4. Sahel : RSP project



ICRA - IEA - April 2005

#### 1. Philippines : SPOTS project

- a) Country Data
  - i. About 5 million rural households have no access to electrical power; dispersed small communities => PV very promizing. Commercial potential=500.000
  - ii. PV experience : more than 4000 SHS systems since 1980's; 25 years of experience.
  - iii. SHS dissemination has been dominated by Government and donor projects (many different models of implementation).
  - iv. Active private sector involvment (at all steps) but also local cooperatives
  - v. Major past experiences in SHS, telecom and water pumping
    - Today, innovative approaches.

Innovation Energie Développement

## 1. Philippines : SPOTS project

#### b) SPOTS Project

- i. Objectives : provide electricity to 40 ARC in 15 provinces in Mindanao
- Characteristics : multiagency undertaking DAR (leader) + DOE + NEA + Rural Electr. Coop., ANEC's, NGO's, LGU's, People Organ. Coop.
- iii. Financing : by Spain (50 millions USD)

# Innovation Energie Développement

ICRA - IEA - April 2005

#### 1. Philippines : SPOTS project

- iv. Project components and Solar Packages :
  - <u>Agribusiness development</u>: water pumping systems and AC Power Bloc
  - <u>Community facilities</u> & Social infrastructures
    : Health Centre, School, Barangay Hall,
    Community Lighting systems and Potable
    Water supply. (Additional SHLS)
  - <u>Institutional Development</u> : community support and training on technical, credit management, agribusiness development.

Innovation Energie Développement

## 1. Philippines : SPOTS project

- v. Phase I implementation status (in 10/2004):
  - 160/5553 SHLS; 85Wp + prepayement
  - 31/68 BH; 85Wp
  - 30/35 HC; 425Wp + refrigerator + lantern
  - 37/68 SCH; 255Wp + colour TV + DVD (educ prog)
  - 48/100 CL; 170Wp; only 1 or 2 per village
  - 9/97 PW; ?
  - 0/35 PB; 10 kW AC Power for productive use.



ICRA - IEA - April 2005

#### **1. Philippines : SPOTS project**

- vi. Main observations (positive) :
  - + High quality of design; high quality of products
  - + Effective local technician training and capacity building (need strict supervision!)
  - + High quality installations by local technicians
  - + Orientation courses on O&M for users & operators
  - + Monthly collective information meeting for users
  - + Reproducibility of the O&M scheme (modular approach with individual operator (teacher, clinic staff) for each solar package)
  - + No tariff for community packages but O&M in charge of LGU's (MOA).

nnovation Energie Développement

#### **1. Philippines : SPOTS project**

- vii. Main observations (negative) :
  - Large range of components (different batteries, BCR, inverters, ...)
  - Many actors involved generating inter-relation problems (public/private, central/regional)
  - Lack of experience of DAR (lead implementer)
  - Complicated and costly organisation of O&M
  - RESCO's are not involved
  - High investment cost (high quality and sophist.)
  - Strong government involvement for long-term sustainability.

ICRA - IEA - April 2005

#### **1. Philippines : SPOTS project**

viii. Conclusions :

Innovation Energie Développement

- Globally too early to evaluate the PV component of SPOTS.
- Project has paid attention to many critical issues to avoid failures.
- Short-term consequences are :
  - Project management & organisation seem tricky and fragile;
  - Project cost is pretty high with unclear financial setup.
- Project formulation allows regular adaptation.



Innovation Energie Développement

### 2. Uganda : ERT Programme

- a) Energy for Rural Transformation project
  - i. ERT is a 10 years programme prepared by the GoU with the Ministry of Energy MoE and Uganda Communication Commission
  - ii. 2 components will be implemented : <u>Education</u> and <u>Health</u>

More info on www.education.go.ug



ICRA - IEA - April 2005

#### 2. Uganda : ERT Programme

- b) General Objectives
  - to <u>increase access to electricity services</u> in rural areas both directly, through household connections, and indirectly, through connections to health, education and other institutions;
  - The program is <u>technology neutral</u> (grid extension, independent power producers, PV energy) but will promote renewable energy. Solar <u>PV technology</u> will be deployed whenever appropriate and least cost based on a lifecycle cost analysis.

nnovation Energie Développement

#### 2. Uganda : ERT Programme

#### c) Specific objectives

- <u>Education Component</u> : to improve the quality of education in 10 districts by providing access to energy and ICT to postprimary education institutions including staff houses.
  - This will assist MoES to reach its goals of expanding opportunities for and access to postprimary education.
  - Furthermore, policy guidelines for energy/ICT in post-primary education will be developed.

Health Component : (not presented here)

#### Innovation Energie Développement

ICRA - IEA - April 2005

#### 2. Uganda : ERT Programme

- d) Education component characteristics
- <u>Cross-sectoral approach</u>, under which an explicit effort has been made to ensure that health, agriculture, education and water sectors benefit from the expansion of rural energy access.
- All rural people will gain benefit from the new services.
- Several <u>capacity and market building</u> interventions to remove barriers to the sustainable use of PV technologies in Uganda.
- Outline of the key financial assumptions, options for sustainability, cost sharing
- <u>Implication and commitment from the district institution</u> is needed to pay the recurrent costs of the energy/ICT packages on a continued basis (agreement before tendering!).
- Feasibility study recommends "supplier led credit scheme" for education package

Innovation Energie Développement

#### 2. Uganda : ERT Programme

- e) Procurement and Energy Packages
- WB loan of US\$ 2,600,000 to GoU for the Education component; part for good payments (Energy & ICT packages)
- Design of the energy packages includes equipment specifications, installation and maintenance arrangements.
- Procurement by Ministry of Education and Sports (MoES) of PV and ICT Packages (equipments, installation and maintenance) (bidding will be launched soon).
- Procurement by Ministry of Health (MoH) of solar PV energy packages for 376 rural health centres.

ICRA - IEA - April 2005

#### 2. Uganda : ERT Programme

- f) Specific issues (tech / non tech)
- <u>External evaluation</u> of cost effectiveness and sustainability of the proposed packages in the Uganda context before bidding.
- To debate whether to use <u>AC or DC systems</u>, or some combination, and whether, in the case of AC systems, whether to use <u>centralized or decentralized</u> ones
- To selectively build and exploit synergies between <u>cross-sectoral assets</u> in energy and ICT but avoiding unnecessary inter-sectoral linkages that may spread implementation difficulties.
- Impact evaluation of linkages between Energy, ICT and Education (or Health).

Innovation Energie Développement

Innovation Energie Développement

#### 3. Mozambique : PV for Rural Health Facilities

- a) Project objectives
  - i. To increase the **coverage** of health services in rural areas where there is no grid
  - ii. To improve the **quality** of health services
  - iii. To motivate the health care **staff** work in rural areas
  - To provide power vaccine refrigeration, illumination of clinics, and electrification of staff houses

## Innovation Energie Développement

ICRA - IEA - April 2005

#### 3. Mozambique (next)

- b) Project implementation
  - i. By Ministry of Health (Maintenance Department); with grant from Norway; completion in 02/2002.
  - ii. Totally 250 rural health facilities in 3 phases
  - iii. Modular system approach :
    - Health Centre lighting system (Fluo + adapted Halo + Na)
    - Vaccine refrigeration system
    - Staff house system (fluo & halo lighting + refrigeration)
      => to attract qualified staff!



Innovation Energie Développement

### 3. Mozambique (next)

- Project implementation (next) b)
  - iv. Local installation courses and Specific training of clinic maintenance staff (=> every 2-3 years).
  - Extra training needed to avoid regular overuses ν.
  - High protective design (lighting, BCR, battery box) vi.
  - Adapted organisation to handle spare parts (lamps, vii. fuses, distilled water)
  - Energy meter for monitoring viii.
  - Installation monitoring survey ix.



ICRA - IEA - April 2005

#### 4. Sahel : RSP project





Innovation Energie Développement